immich docker

📝 ✏️ 📌
immich docker

解决方案:

将:image: ghcr.io/immich-app/immich-server:${IMMICH_VERSION:-release}

改为:image: ghcr.nju.edu.cn/immich-app/immich-server:${IMMICH_VERSION:-release}

使用镜像下载,给出修改后的文件,直接复制然后就可以运行。

点击查看代码

#

# WARNING: Make sure to use the docker-compose.yml of the current release:

#

# https://github.com/immich-app/immich/releases/latest/download/docker-compose.yml

#

# The compose file on main may not be compatible with the latest release.

#

name: immich

services:

immich-server:

container_name: immich_server

image: ghcr.nju.edu.cn/immich-app/immich-server:${IMMICH_VERSION:-release}

# extends:

# file: hwaccel.transcoding.yml

# service: cpu # set to one of [nvenc, quicksync, rkmpp, vaapi, vaapi-wsl] for accelerated transcoding

volumes:

# Do not edit the next line. If you want to change the media storage location on your system, edit the value of UPLOAD_LOCATION in the .env file

- ${UPLOAD_LOCATION}:/usr/src/app/upload

- /etc/localtime:/etc/localtime:ro

env_file:

- .env

ports:

- 2283:3001

depends_on:

- redis

- database

restart: always

healthcheck:

disable: false

immich-machine-learning:

container_name: immich_machine_learning

# For hardware acceleration, add one of -[armnn, cuda, openvino] to the image tag.

# Example tag: ${IMMICH_VERSION:-release}-cuda

image: ghcr.nju.edu.cn/immich-app/immich-machine-learning:${IMMICH_VERSION:-release}

# extends: # uncomment this section for hardware acceleration - see https://immich.app/docs/features/ml-hardware-acceleration

# file: hwaccel.ml.yml

# service: cpu # set to one of [armnn, cuda, openvino, openvino-wsl] for accelerated inference - use the `-wsl` version for WSL2 where applicable

volumes:

- model-cache:/cache

env_file:

- .env

restart: always

healthcheck:

disable: false

redis:

container_name: immich_redis

image: docker.io/redis:6.2-alpine@sha256:2d1463258f2764328496376f5d965f20c6a67f66ea2b06dc42af351f75248792

healthcheck:

test: redis-cli ping || exit 1

restart: always

database:

container_name: immich_postgres

image: docker.io/tensorchord/pgvecto-rs:pg14-v0.2.0@sha256:90724186f0a3517cf6914295b5ab410db9ce23190a2d9d0b9dd6463e3fa298f0

environment:

POSTGRES_PASSWORD: ${DB_PASSWORD}

POSTGRES_USER: ${DB_USERNAME}

POSTGRES_DB: ${DB_DATABASE_NAME}

POSTGRES_INITDB_ARGS: '--data-checksums'

volumes:

# Do not edit the next line. If you want to change the database storage location on your system, edit the value of DB_DATA_LOCATION in the .env file

- ${DB_DATA_LOCATION}:/var/lib/postgresql/data

healthcheck:

test: pg_isready --dbname='${DB_DATABASE_NAME}' --username='${DB_USERNAME}' || exit 1; Chksum="$$(psql --dbname='${DB_DATABASE_NAME}' --username='${DB_USERNAME}' --tuples-only --no-align --command='SELECT COALESCE(SUM(checksum_failures), 0) FROM pg_stat_database')"; echo "checksum failure count is $$Chksum"; [ "$$Chksum" = '0' ] || exit 1

interval: 5m

start_interval: 30s

start_period: 5m

command: ["postgres", "-c", "shared_preload_libraries=vectors.so", "-c", 'search_path="$$user", public, vectors', "-c", "logging_collector=on", "-c", "max_wal_size=2GB", "-c", "shared_buffers=512MB", "-c", "wal_compression=on"]

restart: always

volumes:

model-cache:

分析过程:

失败方法一:添加镜像

下载时很慢。

使用镜像也很慢,

这里我将https://ghcr.nju.edu.cn添加到镜像源也不行。

其实这里如果添加了镜像直接使用命令拉就可以了,会选择最优镜像。但是docker-compose.yml里面直接把路径写死了。

{

"registry-mirrors": ["https://wheurbwj.mirror.aliyuncs.com",

"https://dockerproxy.com",

"https://mirror.baidubce.com",

"https://docker.m.daocloud.io",

"https://docker.nju.edu.cn",

"https://docker.mirrors.sjtug.sjtu.edu.cn",

"https://ghcr.nju.edu.cn"

]

}

最后的效果:下载的很快,基本上跑慢了带宽。

🔗 相关推荐

✨ 💡 🎯
优哈优哈加盟优势
365bet体育官网开户

优哈优哈加盟优势

📅 07-22 👀 7276
弟的笔顺,弟字怎么写,弟的笔画顺序
beat365官方

弟的笔顺,弟字怎么写,弟的笔画顺序

📅 06-28 👀 9768
正在阅读:计算机网络有哪些功能 计算机网络功能介绍【详解】计算机网络有哪些功能 计算机网络功能介绍【详解】